
Reduce, Reuse, Recycle: Repurposing Existing Measurements to
Identify Stale Traceroutes

Vasileios Giotsas
†

Thomas Koch
‡

Elverton Fazzion
♮⋄

Ítalo Cunha
⋄

Matt Calder
♯‡

Harsha V. Madhyastha
⋆

Ethan Katz-Bassett
‡

†
Lancaster University

‡
Columbia University

⋄
Universidade Federal de Minas Gerais

♮
Universidade Federal de São João del-Rei

♯
Microsoft

⋆
University of Michigan

ABSTRACT

Many systems rely on traceroutes to monitor or characterize the

Internet. The quality of the systems’ inferences depends on the

completeness and freshness of the traceroutes, but the refreshing

of traceroutes is constrained by limited resources at vantage points.

Previous approaches predict which traceroutes are likely out-of-

date in order to allocate measurements, or monitor BGP feeds for

changes that overlap traceroutes. Both approaches miss many path

changes for reasons including the difficulty in predicting changes

and the coarse granularity of BGP paths.

This paper presents techniques to identify out-of-date trace-

routes without issuing any measurements, even if a change is not

visible at BGP granularity. We base our techniques on two observa-

tions. First, although BGP updates encode routes at AS granularity,

routers issue updates when they change intra-domain routes or

peering points within the same AS path. Second, route changes

correlate across paths, and many publicly available traceroutes

exist. Our techniques maintain an atlas of traceroutes by monitor-

ing BGP updates and publicly available traceroutes for signals to

mark overlapping atlas traceroutes as stale. We focus our analysis

of traceroute path changes at the granularity of border router IPs

which provides an abstraction finer than AS- or PoP-level but is

not affected by the periodicity of intra-domain load balancers. Our

evaluation indicates that 80% of the traceroutes that our techniques

signal as stale have indeed changed, even though the AS hops re-

mained the same. Our techniques combine to identify 79% of all

border IP changes, without issuing a single online measurement.

CCS CONCEPTS

•Networks→Network dynamics;Networkmonitoring; Pub-
lic Internet;

KEYWORDS

Internet topology, routing, traceroute, path changes, measurements.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IMC ’20, October 27–29, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00

https://doi.org/10.1145/3419394.3423654

ACM Reference Format:

Vasileios Giotsas, Thomas Koch, Elverton Fazzion, Italo Cunha, Matt Calder,

Harsha V. Madhyastha, and Ethan Katz-Bassett. 2020. Reduce, Reuse, Re-

cycle: Repurposing Existing Measurements to Identify Stale Traceroutes.

In ACM Internet Measurement Conference (IMC ’20), October 27–29, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.

1145/3419394.3423654

1 INTRODUCTION

To monitor routing, predict performance, or make other inferences,

many systems gather an atlas of traceroutes from a distributed

set of vantage points [12, 54, 67]. Some systems monitor between

all pairs of vantage points [5, 14, 16, 30, 72, 76]. Others measure

from all vantage points to a set of targets [18, 44, 44, 45, 50, 76, 83].

Others choose custom targets per vantage point [7, 19, 22, 57]. The

fidelity of these systems’ observations or predictions depends on

the completeness and accuracy of their views of Internet routing,

which they must refresh to account for path changes.

Unfortunately, vantage points have limited probing budgets to

restrict bandwidth utilization and other overheads in the networks

hosting them. For example, CAIDA limits Arkmonitors to 100 probe

packets per second [12], and RIPE Atlas limits the probing rate of

Probes to 6 Kbps [65]. Saturating these limits is also not advisable

as interference between overlapping probes can negatively affect

precision and synchronization of measurements [35].

These constraints mean that Internet-scale systems cannot fre-

quently reissue traceroutes along all paths. To best cope with prob-

ing rate limits, a system must remeasure a path only when it is

likely to have changed. But, how can a system make this determi-

nation? Path changes occur at arbitrary times and their frequency

varies across paths [19], so remeasuring all paths periodically or in

a random order wastes some measurements on unchanged routes,

takes too long to detect some changes, and misses some changes

altogether.

Prior work that attempted to detect route changes in a timely

manner suffers from two significant limitations:

(1) Detection via direct measurements has limited coverage. Dou-
bleTree [42], DTrack [19], and Sibyl [18] attempt to reduce

the measurement cost to infer changes. However, techniques

that require any measurements to test if a path has changed

have two undesirable properties: (1) for a fixed measurement

budget, the ability to keep traceroutes up-to-date is inversely

proportional to the number of paths, and (2) many measure-

ments will be “wasted” on paths that remain unchanged.

(2) Detection via AS paths in BGP updates is coarse-grained. Other
approaches detect route changes by passively monitoring

https://doi.org/10.1145/3419394.3423654
https://doi.org/10.1145/3419394.3423654
https://doi.org/10.1145/3419394.3423654

IMC '20, October 27�29, 2020, Virtual Event, USA Vasileios Giotsas et al.

BGP updates [18, 26, 45]. However, they only detect changes
visible at the AS level; intradomain changes and changes at
peering points go undetected.

To overcome these limitations of prior work, in this paper, we
develop techniques which detect�ne-grained route changeswith
broad coverageat no measurement cost. First, while BGP encodes
routes at AS granularity, routers still issue updates when changing
routes at �ner granularities. We treat updates as signals that a
route may have changed, even when the BGP AS-path remains
unchanged. Second, we crawl publicly available traceroutes from
measurement platforms to identify route changes. We treat changes
as signals that overlapping routes might have changed.

Our techniques combine to detect 79% of the IP-level changes
in border routers across two months of a daily RIPE Atlas trace-
route campaign that generated 8 million traces per day, all without
issuing any online measurements. Achieving high coverage re-
quires recognizing routes that are impacted by a BGP update or
changes observed in public traceroutes, and so our techniques tar-
get cases beyond easy ones that directly observe the path change.
Our techniques are precise: 82% of the traceroutes that they indi-
cate as out-of-date, in terms of border-level IP interconnections,
have actually changed. Achieving high precision requires avoiding
falsely associating an event with an una�ected traceroute, and so
we develop techniques to scope impact.

Our techniques can be easily integrated into other systems that
rely on up-to-date traceroutes. When our techniques �ag a trace-
route as likely to have changed, the system using the traceroute
can take a system-speci�c action, such as reissuing a traceroute,
discarding the route, or treating it as less trustworthy.

2 MOTIVATION
Many systems use corpuses of traceroutes.CDNs measure trace-

routes to destinations around the Internet to aid in performance-
aware tra�c engineering [15, 33, 82]. Network tomography and
troubleshooting systems use traceroute corpuses to identify links or
networks responsible for a failure or performance problem [30, 45,
46, 57, 76]. Internet measurement and prediction systems rely on
correlating paths in traceroute corpuses [18, 44, 50]. The inferences
made by these systems degrade if they use out-of-date traceroutes
that no longer re�ect active routes.

Large corpuses cannot be refreshed frequently because measure-
ment platforms have limited measurement budget.Achieving high In-
ternet coverage requires topologically distributed vantage points [15,
16, 18]. The usual approach to achieving this goal is to develop
collaborative platforms where networks hosting vantage points
contribute resources to measurements. Given their collaborative
nature and the requirement of not impacting network tra�c and
equipment, platforms such as Ark [12], RIPE Atlas [67], and Speed-
Checker [69] operate under strict measurement budget constraints.
The rate at which measurements can be issued on these platforms
is further limited by recent observations that overlapping measure-
ments are best avoided to minimize interference [35].

Existing approaches for updating traceroute corpuses are ine�ective
and ine�cient. Ark [12] and iPlane [50] measure paths following
a round-robin schedule, too infrequent for some paths and too fre-
quent for others, since the stability of paths varies greatly [19, 81].

Figure 1: Fraction of paths with border-level and AS-level
changes compared to initial traceroute over time. Most paths
are unchanged even after two months.

DTrack observes previous changes to predict when a path is likely
to change again [19] but ignores that changes (or lack thereof)
in one path have implications for which other paths are likely to
change (or remain stable). Donnet proposed a system that triggers
traceroutes to a destination pre�x in response to changes in the AS-
path and communities observed in the pre�x's BGP updates [21].
The approach, however, does not infer which traceroutes may be
impacted by an observed AS-path or community change. Moreover,
most ASes with traceroute vantage points do not provide public
BGP feeds, so there may be no public BGP updates that indicate
when the AS-path corresponding to a previously measured trace-
route changes.

Repurposing of public traceroutes requires sacri�cing coverage or
freshness.RIPE Atlas and Ark collect and make publicly available a
massive number of traceroutes each day, which make up a particu-
larly large corpus gathered across many individual measurement
campaigns. This corpus is attractive as a source of data for new
use cases. However, each measurement campaign is subject to lim-
ited probing rates and individualized decisions of which paths to
measure, and so the per-path inter-measurement interval varies
and can be extremely long. So, relying on existing public trace-
routes for a new use case necessitates either including very old
traceroutes�some of which are certainly stale due to subsequent
path changes, which can cause incorrect inferences�or only using
recent traceroutes, severely limiting coverage.

Takeaways.In summary, there exist many systems whose ef-
�cacy depends on their ability to maintain up-to-date views of
Internet routing, but they lack good techniques to cope with limita-
tions on probing rates. If the systems had the ability to infer which
paths have changed and which remain stable, they could smartly
allocate probes to refresh only stale portions of the corpus, and they
could use only those public traceroutes that remained unchanged.
To illustrate this idea, we examined traceroutes issued from 897
sources to 497 destinations every 15 minutes for two months (details
in Ÿ5.1.1). Our results in Figure 1 depict the fraction of paths that
di�er from their initial traceroute at di�erent path granularities.
Changes over time are not monotonic since a path may change then
revert back to its initial measurement. After 30 days, 16% of paths
have changed if we consider just the subset of routers at inter-AS
borders. (We consider this granularity to eliminate most changes
caused by ECMP load balancing [6]). For context, CAIDA's Ark
IPv4 Routed /24 Topology Dataset uses a probing rate that would
allow a vantage point to cycle through one traceroute to each /24

Repurposing Existing Measurements to Identify Stale Traceroutes IMC '20, October 27�29, 2020, Virtual Event, USA

in 34-51 days, and so these traceroutes would be stale before the
vantage point could cycle back. On the other hand, 72% of paths
are unchanged at this granularity even after 2 months. So, e�cient
identi�cation of changed paths could keep the corpus up-to-date
with a low probing rate, focusing measurements where needed.
Similarly, identi�cation could enable, for example, safe use of the
majority of public traceroutes issued over the previous two months
(and judicious exclusion of those that were stale).

Hence, to fully capitalize on the potential to reuse traceroutes,
we need the ability to determine when any previously measured
traceroute path has changed, but without having to issue any mea-
surements to make this determination. This paper describes a set
of techniques which can do so in combination.

3 GOAL
Our goal is to create a system that keeps acorpus of traceroutesup-
to-date by either refreshing or pruning a traceroute if the measured
path changes. Changes at di�erent granularities may matter to
di�erent use cases. At the �nest granularity, a path is a sequence
of IP addresses between a source and a destination. At the coarsest
granularity we consider, a path is a sequence of AS hops. In between,
we consider a path as a sequence of border routers, each of which
has one or more IP addresses (aliases), abstracting away the intra-
AS topology while still identifying multiple links between a pair
of ASes. For our purposes, we consider a change to be an AS-level
change if one or more of the ASes on the path changes, and we
consider it to be a border-level change if one or more border routers
change but it isnot an AS-level change (so the AS-path remains
the same, and the border change is at one or more interconnection
points between the ASes).

In this paper, we focus on AS-level and inter-domain (border)
IP-level changes, rather than intra-domain IP-level changes for two
reasons. First, many use cases operate at these granularities, in-
cluding topology discovery and mapping [24, 56], evaluation of
the resilience and robustness of Internet connectivity [29, 43], mea-
surement of inter-domain congestion [20, 48] and tra�c engineer-
ing [55], and analysis of peering strategies [60]. Second, intra-AS
IP-level changes can happen frequently at short time scales due to
load balancing, load sharing, and tunneling, which rarely extend
across AS boundaries [6, 28, 78]. As a result, intra-domain path
dynamics exhibit a much higher degree of periodicity compared to
inter-domain changes [38]. Extending to intra-AS IP-level changes
is an interesting future direction.

4 METHODOLOGY
To achieve unprecedented coverage in our ability to detect when
a path is likely to have changed, we developed two sets of com-
plementary techniques. The techniques passively monitor existing
data streams to detectstaleness prediction signalsthat suggest that
particular traceroutes in thecorpusare out-of-date because of path
changes. One set of techniques rely on BGP feeds (Ÿ4.1) and the
other set leverages publicly available traceroute datasets (Ÿ4.2). Sec-
tion 4.3 describes how our techniques can be applied to monitoring
systems to help keep a corpus of traceroutes up-to-date. Figure 2
provides an overview of our technique and their sections and data
sources. Appendix A describes the (existing) techniques we use

Figure 2: Methodology overview showing data sources (left),
proposed techniques (gray boxes), and which data sources
are used by each technique. IP-to-AS mapping and AS border
detection use multiple data sources (Appendix A).

to map an IP-level traceroute to the coarser granularities and to
geolocate IP addresses.

4.1 Detecting Changes from Public BGP Feeds
We seek to use BGP data not to build snapshots of the Internet's
AS-level routing topology, but to detect when a traceroute in our
corpus is likely to be out-of-date and incorrect. This problem is
challenging because BGP routing activity is not necessarily re�ected
in traceroutes, and vice-versa. BGP provides an AS-path towards
an IP pre�x, a coarser granularity than the traceroute corpus's IP-
level path to a (speci�c) IP destination. Moreover, vantage points
that provide BGP data (e.g., RouteViews and RIPE RIS collectors)
di�er from vantage points from which traceroutes can be gathered
(e.g., Ark, RIPE Atlas), both in terms of host ASes and geographic
locations.

We overcome these limitations by developing techniques that
monitor BGP feeds to infer IP-level border changes, where both
types of changes need not result in any route changes at the AS
level (i.e., not visible in BGP AS-paths). Our techniques consider
BGP data obtained from BGP route collectors in a new light: an
update from a BGP router signals that the router has changed its
routing con�guration, even if the update carries the same AS-path
as the previous update. Our techniques extract signals of possible
path changes by correlating BGP activity across time and across
vantage points.

First, similar to earlier work [18], we identify traceroutestaleness
prediction signalsby looking for changes in overlapping BGP AS-
paths. Second, we monitor for changes in the BGP communities
attribute, as such changes may indicate a change in the border IPs,
even if the AS-path remains unchanged [21]. Third, we rely on the
fact that many routers issue updates whenever they change a route,
even though the transitive attributes may be identical to those of
the previous update. Before describing any of these techniques, we
discuss how we collect and preprocess BGP data.

4.1.1 Initializing BGP feeds to monitor.We use BGPStream [61]
to stream updates from RouteViews and RIPE RIS collectors and

IMC '20, October 27�29, 2020, Virtual Event, USA Vasileios Giotsas et al.

to maintain BGP table views for every route collector peer. We
exclude pre�xes more speci�c than /24, as such pre�xes generally
do not propagate far [9] and may indicate miscon�gurations or
blackholing [31]. We also strip from all AS-paths any AS used by
Internet exchange points (IXPs) [63], so as to include AS links
between IXP members and not the IXP itself. For every destination
in the traceroute corpus, we �nd the most speci�c pre�x advertised
by each BGP vantage point (VP), a router peering with a BGP
collector, and we monitor for updates in the VP's route to the
pre�x. Note that di�erent ASes may use a di�erent pre�x to the
same destination due to the presence of overlapping pre�xes in the
routing system [40].

4.1.2 Inference of AS-level path changes.Given a traceroute� d
to a destination IPd measured at timet0, traversing AS hops
fa1;a2; : : : ;ad g, we determine the times at which AS hops change
in the BGP paths that intersect with� d .

In every �xed-duration time windowwi = »ti ; ti +1º; ti > t0,1 we
�nd the set of AS paths tod that overlap the traceroute (i.e., include
some ASaj from � d), denoting each by� v ;d;t 0 for ti � t 0 < ti +1;
� v ;d;t i is the AS path used by VPv at the beginning of the window,
and � v ;d;t 0 for ti < t 0 indicates a BGP update fromv at time t 0

changing its AS path. From these path segments, we compute the
set of pathsPintersect

i ;aj ;d whose AS-paths �rst intersect� d at aj , i.e.,aj
is the AS farthest from the destination that is in both� d and� v ;d;t 0.
We also compute the subset of pathsPmatch

i ;aj ;d � Pintersect
i ;aj ;d whose AS

hops fromaj to the destination traverse the same ASesaj : : :ad
as� d . For each time windowwi and ASaj 2 � d , we compute
the ratio of paths that match the current traceroute in the corpus,
Pratio

i ;aj ;d = jPmatch
i ;aj ;d j � j Pintersect

i ;aj ;d j.
We monitor the resulting time series forPratio

i ;aj ;d across time
windows and generate astaleness prediction signalwhen the Bitmap
detection algorithm identi�es an outlier in the time series [79].
We selected a statistical method for outlier detection instead of a
machine learning approach because statistical methods can achieve
better accuracy and execution time for univariate time series with
no seasonality [8]. If Pintersect

i ;aj ;d = ; , we consider the valuePratio
i ;aj ;d

as missing and not as an outlier. SincePintersectandPmatch count
path updates rather than VPs, outliers inPratio

i ;aj ;d can capture both
shifts of VPs away from the overlapping path and periods of routing
instability, enabling the detection of IP-level changes even when
an AS path reverts back to its original hops.

We need to avoid changes to the time series (and possible outliers)
caused by variation in the underlying set of VPs over time. To
achieve this,Pratio

i ;aj ;d is computed over only the set of VPs that
intersected� d at aj when the traceroute was issued att0.

To prevent persistent path changes from introducing level-shifts
in the time series forPratio

i ;aj ;d that obscure the detection of further
outliers, we remove time windows �agged as outliers in order to
preserve the stationarity of the time series [17, 75], so the persis-
tent change will continue to register as an outlier suggesting the
traceroute is stale.

1The time window duration is a function of the frequency at which public data is made
available. In this paper we use a time period of 15 minutes in our analysis because it is
the duration of a RouteViews BGP dump cycle. Since RIPE RIS dumps BGP messages
every 5 minutes, a 15-minute window allow us to combine BGP messages from both
projects in every time window.

TIME: 09/23/2020 10:00:12
TYPE: TABLE_DUMP_V2/IPV4 UNICAST
FROM: 195.66.224.175 AS13030
ASPATH: 13030 1299 2914 18747
COMMUNITY: 13030:2 13030:1299 13030:7214 13030:51701
ANNOUNCE: 200.61.128.0/19

TIME: 09/23/2020 12:00:12
TYPE: TABLE_DUMP_V2/IPV4 UNICAST
FROM: 195.66.224.175 AS13030
ASPATH: 13030 1299 2914 18747
COMMUNITY: 13030:2 13030:1299 13030:7173 13030:51203
ANNOUNCE: 200.61.128.0/19

Figure 3: Example change of BGP communities that indicate
the interconnection location of AS13030 and AS1299 (from
London (13030:51701) to Frankfurt (13030:51203)), while the
AS path remains unchanged.

4.1.3 Tracking changes in BGP communities.BGP communities are
often used to encode properties of a route, such as the geographic
location at which an AS learned a route, tra�c engineering poli-
cies associated with the route, or preferences for how the route is
processed (e.g., whether it should be prepended or not exported).
These encodings allow a router to communicate information to
other routers in its own AS or other ASes.

Figure 3 provides an example. By convention, the top 16 bits of
a community indicate the AS that de�nes it. The �gure shows BGP
updates from a route collector's peer 195.66.224.175 (in AS13030) to
the destination pre�x 200.61.128.0/19 at two points in time. The AS-
path is the same; the communities, however, di�er because border
routers of AS13030 signal their locations by adding communities to
routes they receive from external peers. Speci�cally, 195.66.224.175
switched from using a route learned from a router at theTelehouse
LON-1point-of-presence (PoP) in London (13030:51701), to using a
route from theInterxion FRA-3 PoP in Frankfurt (13030:51203)
[58]. While the AS-level path remains identical, the change of peer-
ing point signals a possible IP-level border change in any corpus
traceroute to a destination in 200.61.128.0/19 that goes through
AS13030.

To infer IP-level border changes based on BGP communities, we
monitor for changes in the communities attached to the paths of
BGP VPs that overlap an AS-level su�x of a traceroute� d . We only
consider communities as relevant if they are de�ned by some AS
aj that intersects� d . If the path received from a VP has a change in
communities associated withaj (i.e., a communityaj :xxx is added
and/or removed), we consider it astaleness prediction signalthat � d
may have changed, except in two cases which we explain next.

First, since communities are an optional transitive BGP attribute,
the communities values may be stripped out by any AS along the
path. Consequently, we may observe a community appearing or dis-
appearing if there are changes in the AS hops between the intersect-
ing ASa and the VP. For example, suppose a vantage pointv 's path
changes fromfv;x;aj ; :::;ad gto fv;y;aj ; :::;ad g. If x strips out ev-
ery community before propagating a route, whiley preserves the

Repurposing Existing Measurements to Identify Stale Traceroutes IMC '20, October 27�29, 2020, Virtual Event, USA

communities, then communities may appear in the BGP feed even
though the set of communities added to the route never changed.
To avoid such arti�cial changes, if the route changes from having to
not having communities (or vice versa), we only consider it astale-
ness prediction signalif the AS-path remains the same. Additionally,
if a new community appears on the path fromv, but that same
community was already on an overlapping AS path from another
VPv 0, we do not consider it as a new signal of change.

Second, while some communities re�ect attributes of border IPs
(e.g., geolocation communities), other communities have no relation
to the traversed IP hops (e.g., control of path prepending). The
semantics of BGP communities are de�ned by each network, and
documentation, if even publicly available, follows ad-hoc formats.
Additionally, even community values that do relate to properties
of border IPs may not relate to the traceroutes in the corpus. For
example, the BGP path may traverse a di�erent portion of the AS
than the traceroute and may carry a geolocation community for an
interconnection point that is not used by the traceroute. To prevent
false signals due to these issues, our technique automatically learns
over time which BGP communities correlate with changes, using a
process we describe in Section 4.3.

4.1.4 Inferring changes from duplicate updates.To catch changes
that do not manifest as AS path or community changes, we exploit
the observation made in prior work that many seemingly duplicate
updates correspond to changes in attributes that are not propagated
across AS borders, some of which relate to route changes invisible
at the AS granularity (e.g., multi-exit discriminator and IGP cost
changes) [34, 62]. While we can associate changes in AS paths or
BGP communities to particular ASes that appear on traceroutes,
duplicate updates give no direct indication as to which AS triggered
them.

To overcome this challenge, we check for contemporaneous
duplicate/unchanged updates (i.e., updates without changes to AS-
path or communities attributes) to the same destination from multi-
ple BGP collector peers with overlapping AS-paths, suggesting that
the change originated on the common subpath shared by the peers.
In particular, for each AS-level su�x of the traceroutefaj ; : : : ;ad g,
we �nd the set of BGP VPsV j ;d

0 that share that su�x at time
t0 when the traceroute� d is issued and track the subsets of VPs
V j ;d

i � V j ;d
0 that propagate an unchanged update in window

wi . We monitor the time series tracking the number of such peers
U j ;d

i = jV j ;d
i j for anomalous time intervals (Ÿ4.1.2).

A complication happens when some of the peers inV j ;d
i have a

common subpath that extends beyond the portion that overlaps the
traceroute. For example, consider a subset of BGP collector peers
that all share a common AS subpathfaj � n ; : : : ;aj � 1;aj ; : : : ;ad g,
but only hopsfaj ; : : : ;ad g are common with the corresponding
traceroute. A later �urry of updates from these VPs could indicate
that the traceroute is out-of-date, or it could be due to a change in
faj � n ; : : : ;aj � 1g, which does not overlap the traceroute.

To avoid this issue, we identify each ASak that is on the paths of
at least 2 VPs inV j ;d

0 and is not on the traceroute. For each, we �nd

the set of VPsV 0k;d
i that traverse ASak on the way tod but not

the entire subpathfaj ; : : : ;ad g, and monitor the number of those
VPs that propagate an unchanged BGP updateU0k;d

i = jV 0k;d
i j.

Figure 4: Example correlating bursts of BGP updates to infer
potential changes of border-level IP interfaces. The shaded
areas indicate time intervals with outliers. There are two
time intervals with outliers (ta and tb) for U j ;d

i . The ta out-

lier does not coincide with an outlier for U0k;d
i , therefore we

infer a potential IP-level border path change for � d at ta . In
contrast, during tb both time series exhibit outliers, which
indicates that a potential change happened outside the over-
lapping subpath between the BGP and traceroute paths.

When the set of VPsV j ;d
i have updates in windowwi that

are detected as outliers, we check the corresponding seriesU0k;d
i

for any and all ASesak < � d traversed by the VPs inV j ;d
i . If

at least one VP did not traverse any other ASak experiencing
contemporaneous updates, then we generate astaleness prediction
signalfor the traceroute. Figure 4 shows an example of how we
correlate theU j ;d

i andU0k;d
i time series to infer IP-level border

changes.
It is possible thatU j ;d

i andU0k;d
i may experience update bursts

in the same time interval for di�erent root causes. However, since
usually at least some VPs inV j ;d

0 do not share the same �extra� AS
ak and hence observe ASaj independent fromak , the technique
can usually di�erentiate such contemporaneous but independent
update bursts from bursts originating only fromak . More sophisti-
cated root cause detection techniques have been proposed in the
past [10, 27, 41], but these works focus on (the simpler case of)
bursts of BGP updates that include AS path changes.

4.2 Detecting Changes from Public Traceroutes
To identify changes that do not manifest in the visible BGP dynam-
ics, we passively consume the massive, publicly-available traceroute
datasets issued by monitoring platforms such as RIPE Atlas and
Ark [12, 67, 68]. For instance, as of April 2020, RIPE Atlas consists of
almost 11K active vantage points that collectively issue more than
10K measurements per second that are made publicly available [67].

While public datasets have lots of measurements overall, they
have two key limitations due to limited probing budgets. First, most
vantage points have recent traceroutes to only a small fraction of
destinations, and so the IP-level overlap between the public dataset
and the monitored corpus may be small. Second, many paths in
public traceroutes are refreshed infrequently, so we cannot rely
on directly observing a path change, unlike with BGP monitoring,
where essentially every path change comes with an update.

To improve the overlap between public datasets and the mon-
itored corpus to identify which corpus traceroutes have become
out of date, our techniques loosen the de�nition of overlap. First,
because the set of public traceroutes is large overall but contains

IMC '20, October 27�29, 2020, Virtual Event, USA Vasileios Giotsas et al.

relatively infrequent traceroutes to most individual destinations, we
maintain a sliding window of recent public traceroutes and consider
those that overlap a subpath of a corpus traceroute� regardless of
their destination, loosening the destination-based monitoring of
Section 4.1. The window size (duration) can be con�gured based
on the use case, the size of the traceroute corpus being maintained
relative to the budget (if any) available to refresh it, and the relative
impact of removing a traceroute that is still valid versus waiting
too long to prune a stale traceroute. Generally, a shorter window
size allows for more timely staleness detection, while a longer win-
dow size enables staleness detection for more paths. Second, to
further increase coverage without compromising accuracy, we use
two techniques that o�er di�erent tradeo�s between the degree
of overlap they require and the granularity of changes they can
detect. One technique requires IP-level hop-by-hop overlap along a
subpath and can detect IP-level border changes (Ÿ4.2.1). The other
technique loosens the subpath overlap required, looking for pub-
lic traceroutes that go fromhAS1;city1i to hAS2;city2i via border
router r (possibly with other hops in between), but can only detect
router-level border changes (Ÿ4.2.2).

Given that our techniques �ignore� that BGP routing is destination-
based when deciding which public traceroutes overlap a corpus
traceroute, we use two approaches to avoid compromising accuracy.
First, we restrict ourselves to subpaths that cross AS boundaries.
Interdomain policies are more stable and provide a more reliable
signal than intradomain routes, where tra�c engineering can intro-
duce dynamic and unpredictable routing recon�gurations. Second,
rather than relying on an individual public traceroute as a signal,
we look for signi�cant shifts in the relative frequency at which
public traceroutes uncover di�erent routes between two points
on a corpus traceroute. An individual public traceroute may di�er
from a corpus traceroute for reasons including load balancing or
destination-based routing, whereas shifts in the frequency at which
a subpath is observed across many traceroutes suggests meaningful
routing changes.

Section 4.2.1 presents the concrete details of the technique for
IP-level subpaths, and Section 4.2.2 describes how we adapt it for
border-level paths between two cities. Additionally, Section 4.2.3
describes our approach to capture changes in IXP membership.
Capturing IXP membership changes allows us to infer concurrent
path changes that a�ect multiple sources and destinations.

4.2.1 Inference of IP-level subpath changes.For each corpus trace-
route� d = h�0; : : : ;di , we process every subpath� hm;n i = h�m ; : : : ;
�n i , 0 � m < n � d that traverses at least one inter-AS boundary
as follows:

(1) Amongrecentpublic traceroutes (those within the sliding
window), letTmatch

i ;m;n be those that traverse� hm;n i andT intersect
i ;m;n

be those that go through�m on the way to�n (but may follow
a subpath other than� hm;n i).

(2) LetTratio
i ;m;n = jTmatch

i ;m;n j � j T intersect
i ;m;n j, the fraction of traceroutes

within a sliding windowwi between�m and�n that match
� d .

(3) We construct the time series ofTratio
i ;m;n and generate astale-

ness prediction signalwhen we detect an outlier in the time-
series using the modi�ed z-score introduced in [37]. We use
the modi�ed z-score instead of the Bitmap algorithm we

Figure 5: Example of monitoring a path in our traceroute cor-
pus for router-level border changes. Traceroute � 0 (from s1
to d1, green) traverses the subpath � 0

hcm ;cn i = f 1; : : :2; : : :3g
between cities cm and cn , with hop 2 being on the border
router r between two ASesASm and ASn . Traceroute � 1 (from
s2 to d2, blue) traverses the same city-level hops through a
di�erent subpath � 1

hcm ;cn i = f 4; : : :5; : : :6g, with hop 5 on
the same border router r as hop 2. As such, both � 0 and � 1

are contained in Tmatch¹r º
i ;cm ;cn

� T intersect
i ;cm ;cn

. Traceroute � 2 (from
s3 to d3, orange) also traverses the city-level hops cm and
cn but through a subpath � 2

hcm ;cn i = f 7; : : :8; : : :9g, which

crosses a di�erent border router r 0. Therefore, � 2 < Tmatch¹r º
i ;cm ;cn

,
but � 2 2 T intersect

i ;cm ;cn
still. Finally, traceroute � 3 (from s4 to d4,

pink) traverses hops 10, 11, and 12, and is not part of T intersect
i ;cm ;cn

since it does not intersect any IP in city cn .

used for outlier detection in time series derived from BGP
data (Ÿ4.1.2), because we found it to be more robust for the
noisier traceroute data.

Con�guration of signal parameters.For each monitored subpath
� hm;n i we require that we have at least 20 consecutive windows,
which is widely considered as the minimum recommended number
of observations for robust outlier detection [53]. Accordingly, for
each� hm;n i we select the minimum window size that would allow
us to collect 20 consecutive windows with data points. We use a
minimum window duration of 15 minutes, the window size used in
our BGP signals, and a maximum window size of 24 hours, to limit
the amount of public traceroutes that we need to accumulate and
process to 20 days to avoid resource-scaling and performance issues.
If for a given� hm;n i we have less than 20 consecutive windows
with data points, we do not consider this subpath for staleness
inferences.

4.2.2 Inference of router-level border changes.If public traceroutes
do not reveal a stable distribution as to how frequently we see dif-
ferent paths between�m and�n , it is di�cult to determine whether
shifts indicate changes in which paths are in use or unrelated noise
(i.e., the time seriesTratio

i ;m;n is not amenable to outlier detection).
However, if public traceroutes indicate that two ASesASm and
ASn consistently use a speci�c border routerr to exchange tra�c
between certain geographical locations (regardless of variations in
the IP-level), then later indicate that the same ASes consistently
use a di�erent border routerr 0 to transit tra�c between the same

Repurposing Existing Measurements to Identify Stale Traceroutes IMC '20, October 27�29, 2020, Virtual Event, USA

locations, it is likely that the ASes changed routing policy, as rout-
ing decisions such as early exit will generally be consistent across
a PoP or city [70].

We adapt the approach in Section 4.2.1 as follows. LetT intersect
i ;cm ;cn

be
the set of recent public traceroutes that traverse (any)�m located in
city cm andASm , and (any)�n located in citycn andASn , with cm ,
cn . LetTmatch¹r º

i ;cm ;cn
� T intersect

i ;cm ;cn
be the public traceroutes that traverse

the border routerr betweenhASm ;cm i and hASn ;cn i . Figure 5
illustrates these sets. We compute theTratio¹r º

i ;cm ;cn
= jTmatch¹r º

i ;cm ;cn
j �

jT intersect
i ;cm ;cn

j, for each time windowwi . The size of the time window
is selected as in Ÿ4.2.1. When we detect outlier values in theTratio¹r º

i ;cm ;cn
time series, we generate astaleness prediction signalindicating a
border-level change between ASm and ASn .

4.2.3 Inference of IXP membership changes.We calculate an initial
snapshot of IXP membership at the start of the staleness detection
period based on PeeringDB, which we augment with the ASes
that appear adjacent to IXP interfaces in traceroutes to account
for missing PeeringDB information. We then continue to monitor
the ASes that appear as near-end (left-adjacent) neighbors of IXP
interfaces in our public traceroute feed. We ignore ASes that appear
as far-end neighbors (right-adjacent) of IXPs, since most routers
reply with the ingress interface to traceroute probes, which means
that the next hop of an IXP interface may not correspond to the AS
to which the IXP interface is assigned.

When we detectASi as a newIXPx member, we search for
(previously-collected) traceroutes that includeASi and anotherASj
that is already a member ofIXPx in our corpus, since the path may
have changed to go directly fromASi to ASj via IXPx . For each such
traceroute, we check the relationship betweenASi and the next-hop
ASk used to reachASj using CAIDA's AS relationship database [49].
If ASk is a provider ofASi , then we generate astaleness prediction
signal, asASi may prefer to send tra�c to ASj directly using the
new, cheaper IXP interconnection. IfASk is a public peer ofASi
(i.e., peering over a di�erent IXP), we also generate a signal, since
we assume shortest AS path routing when two neighbors have the
same peering relationship (and BGP Local Preference). IfASk is a
private peer (i.e., the peering is not over an IXP interface) we do not
generate a signal, since private peers are often assigned higher BGP
Local Preference values than public peers [64]. We do generate a
signal in the case of routing through a private peer if such changes
were observed in public traceroute feeds, which allows us to infer
that ASi assigns equal BGP Local Preference values to public and
private peers.

4.3 Using Staleness Prediction Signals
Depending on the goals and constraints of a system, the system
may usestaleness prediction signalsto decide which traceroutes
to refresh, to prune stale traceroutes, or to treat inferences made
with stale traceroutes with lower con�dence. This section discusses
general approaches to using signals in real systems.

4.3.1 Refreshing Stale Traceroutes and Signal Calibration.Once
stale traceroutes are detected in a corpus, in many scenarios it is
desirable to issue new traceroutes to refresh them. However, the

number of traceroutes signalled as stale can exceed the measure-
ment budget, particularly in systems that require monitoring a large
corpus (e.g., [18, 46, 50, 83]).

Each corpus traceroute crosses some set of borders between ASes.
Each border may be monitored by zero or more of our techniques
depending on the visibility provided by available vantage points.
Some of the techniques monitor the use of the border(s) on the way
to particular destinations (Ÿ4.1), whereas others monitor the use of
the border along a subpath independent of destination (Ÿ4.2). We
say a technique provides apotentialstaleness prediction signal for
a border (and associated destination or subpath) that it monitors.
We say a potential signal and a corpus traceroute arerelatedif
the potential signal monitors a border and destination/subpath of
the traceroute. At any point in time, some of the potential signals
related to a traceroute may indicate that it is stale (i.e., the technique
generated astaleness prediction signalsince the traceroute was
issued). Any related potential signal for which astaleness prediction
signalhas not been generated implicitly indicates that the technique
has not detected a change at that border.

To prioritize which traceroutes to reissue, we monitor the e�ec-
tiveness of each potential signal over time and prioritize those that
are e�ective. To capture e�ectiveness, every time we remeasure
a traceroute, we evaluate the correctness of each potential signal
related to the (old) traceroute. A signal that indicated a change
in a portion of the old traceroute is considered a True Positive
(TP) if that portion of the path has actually changed, or a False
Positive (FP) if that portion of the path remains unchanged. A po-
tential signal that (implicitly) indicated that a portion of a path
had not changed is a True Negative (TN) if that portion remains
in the new traceroute, or a False Negative (FN) if that portion is
not in the new traceroute. For the vantage pointv that issued the
traceroute and each related potential signals, we maintain running
tallies TPv ;s, FPv ;s, TNv ;s, andFNv ;s over a sliding window of
the lastl = 30 (by default) signal generation windows to allow
for changes over time. We use these tallies to maintain the true
positive rateTPRv ;s = TPv ;s•¹TPv ;s +FNv ;sº and the true negative
rate TNRv ;s = TNv ;s•¹TNv ;s + FPv ;sº. Before the initial sliding
window is �full� of l windows, we considerTPRv ;s andTNRv ;s to
be uninitialized.

We refresh a number of measurements at the end of eachstaleness
prediction signalgeneration windowwi according to the probing
budget available for refreshing the corpus. LetSi be the set of
staleness signals that predict a change at the end of windowwi ,
and �Si be the set of potential signals that do not predict a change.
Let Sv

i � S i and �Sv
i � �Si be the subsets related to a traceroute

from vantage pointv .
We decide which measurement to issue using the following steps:
(1) We �rst choose the traceroute VPv with the highest relative

TPR across all VPsv 0with signals inSi . More precisely, we

choosev = argmaxv
Í

s2Sv
i

TPRs;v •
� Í

v 0

Í

s2Sv 0
i

TPRs;v 0

�
: This

selection prioritizes VPs whose measurements more often
detect changes, increasing e�cacy of the refreshing process.

(2) For simplicity, we calculate a single probability for the se-
lected VPv to refresh each of its traceroutes that a related

IMC '20, October 27�29, 2020, Virtual Event, USA Vasileios Giotsas et al.

staleness prediction signalindicates is stale. The potential sig-
nals may not agree on which traceroutes have changed. We
combine their �opinions� to decide a probability of refreshing

a traceroute, as follows:Prefresh
v ;i =

Í
s2Sv

i
TPRs;v

Í
s2Sv

i
TPRs;v +

Í
s2 �Sv

i
TNRs;v

:

This calculation potentially considersTPRandTNRinferred
across multiple traceroutes, multiple borders per traceroute,
and multiple potential signals per border. The potential sig-
nals may �disagree� on whether or not their monitored por-
tions of traceroutes need to be refreshed. TheTPRof signals
that indicate staleness will drive up the likelihood of refresh-
ing a traceroute, and theTNRof potential signals that do not
indicate staleness will drive down the likelihood.

(3) For every signal inSv
i we iterate over all related corpus trace-

routes fromv�that is, the set that the signal monitors and
hence now suggests are stale�and, if measurement budget
remains, we issue a remapping traceroute with probabil-
ity Prefresh

v ;i .
(4) If after executing step 3 there is still measurement budget

available, we removev from the set of VPs that can be se-
lected and we repeat the process from step 1.

(5) While budget remains after the following process, which
in particular happens during bootstrapping whileTPRv ;s
andTNRv ;s remain uninitialized for many vantage points
and signals, we order the signals according to the attributes
in Table 1, ordered by their priority from highest to lowest.
The �rst 5 attributes compare the overlap of the traceroutes
inferred as stale and the public traceroutes or BGP feed that
triggered the inference. When two signals are tied for one
attribute, before moving to the next attribute we use the
number of VPs as a tie-breaker for BGP-based signals or the
deviation from the staleness detection z-score for traceroute-
based signals. We use this technique instead of random signal
selection to bootstrap our TPR calculations using the best
possible signals for each vantage point, so that we avoid
building low scores for signals that can be potentially useful
for a vantage point but may not be selected due to a bad
start.

4.3.2 Revoking stale signals.Paths often change from a preferred
prevalent route to a less-preferred route temporarily during disrup-
tions, before changing back to the preferred prevalent route after
the disruption is solved [19]. Some of our techniques provide not
just a signal of when a corpus traceroute has gone stale but also
if it later reverts to its original route. When all AS path (Ÿ4.1.2),
community (Ÿ4.1.3), IP-level subpath (Ÿ4.2.1), and inter-city border
router (Ÿ4.2.2)staleness prediction signalsassociated with a particu-
lar corpus traceroute revert to the value they had when the corpus
traceroute was issued, we discard thestaleness prediction signals
and consider the corpus traceroute fresh again without reissuing a
traceroute.

5 EVALUATION OF PRECISION AND
COVERAGE

This section evaluates our techniques in the following scenarios:
(1) Section 5.1 presents aretrospective evaluationto evaluate the

coverage and precision of ourstaleness prediction signals. We

Table 1: Ordered list of signal attributes used to sort signals
by priority when choosing measurements to refresh stale
traceroutes during the bootstrap period.

Priority Signal Attribute
1 Longest IP-level path overlap
2 Longest AS-level path overlap
3 VPs in the same AS and city
4 VPs in the same AS
5 VPs in the same city
6 AS-level change
7 Border-level or IXP change

compare traceroutes across consecutive rounds of periodic
measurements and assess the relationship between changes
and signals that occur between the measurement rounds.

(2) Section 5.2 presents alive evaluation, in which we use our
techniques to maintain a traceroute corpus for two months.
We compare the e�cacy of issuing refresh traceroutes using
our techniques and random choices.

(3) Section 5.3compares our techniques with earlier approaches.

Metrics.We evaluate the precision and coverage of our tech-
niques in detecting path changes. We de�neprecisionas the fraction
of signals that identify a path change in our dataset, andcoverage
as the fraction of path changes for which our techniques generate
signals. Precision is the ratio between the number of correct signals
(true positives) and the number of signals (positives). Coverage is
the ratio between the number of correct signals and the number of
path changes (true positives plus false negatives).2

Public BGP, traceroute feeds, and traceroute processing.We collect
all the available RouteViews and RIPE RIS data from BGPStream
to compute signals using our BGP-based techniques, starting two
days prior to the initialization of the corpus of traceroutes. During
our measurement period, RouteViews and RIS o�ered 710 IPv4
VPs in 485 ASes, 84% of which advertised their full BGP table to
the collectors. The public traceroutes we use for each scenario are
explained in their respective subsections. Appendix A describes
standard approaches we use to process traceroutes.

5.1 Retrospective Evaluation
5.1.1 Traceroute corpus.We use the RIPE Atlas anchoring mea-
surements, which issue two types of traceroutes every 900 seconds:

(1) A traceroute to every Atlas Anchor (a device with more CPU,
memory, and network bandwidth than regular Probes) from
approximately 400 Atlas Probes. The set of Probes can di�er
across Anchors but is kept stable across rounds for each
particular Anchor. If a Probe becomes inactive, it is replaced.

(2) A mesh of traceroutes between all Anchors.
We start collecting anchoring measurements to 497 Anchors on

t0 = 2019-02-15. Every 900-second round, the anchoring measure-
ments produce about 446K traceroutes, 199K traceroutes between
Probes and Anchors, and 247K traceroutes between Anchors.

Figure 1 shows the fraction of border-level and AS-level paths
that are di�erent from their initial t0 traceroute over a period of
2We use the termcoveragerather thanrecall(calculated the same way) because false
negatives (undetected changes) are mainly caused by a lack of vantage points in the
proper locations.

Repurposing Existing Measurements to Identify Stale Traceroutes IMC '20, October 27�29, 2020, Virtual Event, USA

Table 2: Precision and coverage for each path staleness prediction technique for the retrospective evaluation. Each technique
has high precision, and combining all techniques is necessary to achieve high coverage.

Coverage
AS or border changes AS-level changes Border-level changes

Technique #Signals Precision Individual Unique Individual Unique Individual Unique

BGP AS-paths 377,067 0.82 0.13 0.07 0.28 0.16 0.05 0.02
BGP communities 267,571 0.80 0.09 0.05 0.03 0.01 0.12 0.07
BGP update bursts 363,368 0.72 0.11 0.03 0.04 0.01 0.14 0.04
BGP Total 1,008,006 0.74 0.27 0.29 0.24

Colocation changes 305,909 0.85 0.13 0.08 0.12 0.06 0.13 0.10
Traceroute subpaths 1,244,558 0.81 0.51 0.35 0.42 0.23 0.56 0.41
Traceroute borders 261,965 0.83 0.11 0.07 0.19 0.09 0.1 0.05
Traceroute total 1,812,432 0.82 0.69 0.70 0.67

All techniques 2,820,438 0.80 0.81 0.86 0.79

two months. Path changes accumulate over time, with about 15% of
the AS-level and 28% of the border-level paths changed at the end
of the 60-day measurement period. On the one hand, these fractions
are high enough that inferences made using this corpus would be
signi�cantly hampered if traceroutes are not refreshed over time,
which is not possible for most large-scale traceroute campaigns due
to rate limits that prevent refreshing all paths frequently enough.
On the other hand, the fraction of �fresh� traceroutes remains high,
showing that one can indeed cope with stringent rate limits by
reusing archived traceroutes if one is able to detect and �lter-out
(or selectively refresh) stale traceroutes.

We divide the available VPs, i.e., Atlas Probes and Anchors, into
two randomly selected subsets of equal size,Ppublic andPcorpus. Our
goal is to maintain up-to-date traceroutes from the VPs inPcorpus
to the Anchors, a corpus of 223K (source, destination) pairs.

5.1.2 Detecting changes.For our traceroute-based techniques, we
use the publicly available traceroutes from 4,372 RIPE Atlas VPs
in Ppublic, excluding traceroutes toward the targets of the anchor-
ing measurements. By excluding all traceroutes to destinations of
the anchoring measurements and public traceroutes from VPs in
Pcorpus, we avoid biasing our results by deriving change signals
from traceroutes that closely re�ect the corpus we are trying to
maintain. This setting is appropriate for evaluating our techniques
because it mirrors an intended use case of relying on public RIPE At-
las traceroutes to aid in maintaining a researcher's own RIPE Atlas
traceroutes, since it is the most widely used large-scale traceroute
platform today, with the most stringent rate limits.

5.1.3 Results.Table 2 presents the number, precision, and coverage
of our signals across the 60-day period. All techniques have high
precision and contribute unique inferences (i.e., inferences not made
by any other technique), so all techniques are useful and necessary
to achieve the combined coverage of 79% for border-level changes.

By monitoring for changes in BGP AS-paths and BGP commu-
nities as well as for bursts of BGP updates, we are able to identify
27% of the changes overall and 24% of the border-level changes.
Further, when our BGP communities technique indicates that a
traceroute is stale, the traceroute has actually changed 80% of the
time. The technique that monitors for BGP update bursts is not as
precise, at 72% precision. Our three traceroute-based techniques
identify 69% of the changes, including 67% of border-level changes.

(a) Precision (b) Coverage
Figure 6: Precision and coverage of signals across all tech-
niques and VPs for the retrospective evaluation.

Combined they have a precision of 82%, and each of the techniques
individually have precision above 81%. Combined with the BGP
techniques, we identify 79% of all border-level path changes and
86% of AS-level changes, without issuing any online measurements.

As a comparison point, monitoring of BGP feeds for changes in
overlapping AS paths, a technique used in other works [18], only
captures 13% of the changes in the traceroute corpus. The poor
coverage is partly attributable to the technique only monitoring
for changes in AS-level paths, but it only captures 28% of changes
even if we limit ourselves to considering AS-level changes in the
traceroutes. Since our full set of techniques capture 86% of AS-level
changes, they o�er signi�cant utility over earlier approaches even
for the large number of prior systems (e.g., [41, 83]) which only use
traceroutes that have been converted to AS-level paths.

Figure 6a shows the precision across all signals and VPs com-
bined for each day in the evaluation period. At the start of the
evaluation period about 60% of the inferences are true. Our tech-
niques for generating signals iteratively improve over time leading
to more than 80% correct inferences after the mid-point of the eval-
uation period and almost 90% at the end, for both AS-level and
border-level changes. This high precision implies that a system
can e�ectively use our signals to refresh traceroutes or to iden-
tify stale routes. The calibration process is especially bene�cial for
determining which BGP communities correlate with border-level
path changes and which of the VPs in public feeds of routing data

IMC '20, October 27�29, 2020, Virtual Event, USA Vasileios Giotsas et al.

(a) Border-level precision of
traceroutes issued using sig-
nals versus at random.

(b) Fraction of path changes captured
by random traceroutes also captured
by staleness inference signals.

Figure 7: Results of live evaluation.

correlate with the traceroute sources in the traceroute corpus (i.e.,
calibration learns the TPR achieved from di�erent VPs). Appendix B
demonstrates how e�ective tuning of community-basedstaleness
prediction signalsis at pruning at false positives over time.

Figure 6b shows that coverage is stable over time, and usually
above 80%. For the subset of changes that we even have a chance
of detecting using one of our techniques (i.e., changes which have
some overlap with the data we use to generate signals), coverage
is even higher at over 90%. This high coverage implies that a real
system can detect most path changes using our signals, particularly
on paths where we monitor changes. Moreover, a system using our
techniques knows the set of paths that our techniques are capable of
monitoring and can treat paths where they lack visibility di�erently,
if necessary. Appendix C examines reasons for the high coverage.

5.2 Live Evaluation
Next, we evaluate the performance of our staleness prediction tech-
niques on a live monitoring system restricted to issue 10 thousand
traceroutes per day, RIPE Atlas's rate limit per non-privileged user.

5.2.1 Traceroute corpus.To expand our evaluation to a larger set
of destination IPs, we need to sidestep the need for repeated mea-
surements along every path. Therefore, in our live experiment, we
evaluate our signals based on the traceroutes we issue to refresh
the traceroutes signaled as stale, allowing us to use a larger dataset
as our initial traceroute corpus, with more destinations.

Our live evaluation uses the built-in #5051 RIPE Atlas measure-
ment as the initial traceroute corpus. The built-in #5051 measure-
ment aims to map the Internet topology by probing the:1 address
in each•24pre�x visible in the RouteViews and RIPE RIS public
BGP feeds [66]. A #5051 measurement round is performed every
900 seconds, but not all Probes participate in every round. Since the
set of destinations is very large, it is not possible to measure each
pre�x from every Probe. RIPE Atlas randomly allocates destinations
to Probes in every round. We use one day of traceroutes from the
#5051 measurement as our initial corpus of 993,948 traceroutes.

5.2.2 Detecting changes.We executed the live evaluation for two
months after the initial measurement, issuing 10K �refresh� trace-
routes per day at random and 10K using signals generated by our
techniques. We use the #5051 measurements on the remaining days
to generate signals using our traceroute-based techniques. When
the number of signals exceeds the probing quota, we choose trace-
routes to refresh based on signal performance for each VP (Ÿ4.3).

5.2.3 Results.Figure 7a compares the precision of the traceroutes
issued to refresh the corpus (i.e., the fraction that revealed a path
change), when they are issued at random or chosen based onstale-
ness prediction signals. Our results show that chosen signals have
precision generally above 80% across the 2 month evaluation pe-
riod, while random selection exhibits much lower precision, wasting
measurement budget. The �gure shows precision for border-level
changes, and results for AS-level changes were similar (not shown).
Random traceroutes work better over time because more paths
change at least once as time progresses.

Figure 7b shows the fraction of traceroute changes captured by
the random traceroutes that were �agged bystaleness prediction
signals. We expect the random traceroutes to be an unbiased sample
of the (unknown) set of all changes in the monitored paths, so
coverage of changes detected by our random traceroutes should be
representative of the overall coverage across all changes. For AS-
level changes coverage is typically above 80%, while for border-level
changes coverage �uctuates around 70�75% after 20 days.

5.3 Comparison with dtrack and Sibyl
We compare the e�ciency of signals for maintaining an up-to-date
traceroute corpus (by issuing traceroutes to refresh paths with
staleness prediction signals) with three other approaches. The �rst
alternative we consider is periodic round-robin route traceroutes,
similar to measurement campaigns on CAIDA's Ark and RIPE Atlas.

Second, we consider Sibyl's approach to patch a corpus of exist-
ing traceroutes with new traceroutes [18]. Whenever Sibyl remea-
sures the route to a destination, it compares the new route with the
previous route. When Sibyl �nds a path change from subpaths to
another subpaths0, it patches all other traceroutes in the corpus
that traverses to traverses0 instead. We apply Sibyl's patching and
pruning on top of periodic traceroutes: any route change detected
in periodic traceroutes is used to patch other traceroutes.

Third, we considerdtrack [19], which shares the same goal of
our techniques: reduce measurement cost to more accurately track
path changes.dtrack measures Internet paths once at startup to
build the traceroute corpus, then starts achange detectionphase
where it sends single-packet TTL-limited probes to varying hops
on measured paths to detect changes. During the detection phase,
dtrack probes each path at a rate proportional to the path's es-
timated probability of change. Whenever a change is detected,
dtrack runs traceroute to remap the change and update the corpus.

To evaluate the four techniques (ours plus the three alternate
approaches) when con�gured at various rate limits, we gather a
dataset at a much higher rate limit to use as a pseudo-ground-truth3.
We emulate the four approaches by having them decide which mea-
surements to remeasure at what times based on their individual
criteria, using the pseudo-ground-truth to determine the result of
those measurements, since it has frequent measurements of all
paths. As the pseudo-ground-truth, we collect a dataset of path
changes between 1�13 April 2019 from a PlanetLab node, using
dtrack to maximize the number of changes detected. Over the
period,dtrack monitored 5500 paths from the PlanetLab node,
and the measurements traversed 2819 ASes. including 91% of those

3We saypseudo-ground-truth because it may still miss short-lived path changes.

	Abstract
	1 Introduction
	2 Motivation
	3 Goal
	4 Methodology
	4.1 Detecting Changes from Public BGP Feeds
	4.2 Detecting Changes from Public Traceroutes
	4.3 Using Staleness Prediction Signals

	5 Evaluation of Precision and Coverage
	5.1 Retrospective Evaluation
	5.2 Live Evaluation
	5.3 Comparison with dtrack and Sibyl
	5.4 Impact of Load Balancing

	6 Evaluation of Use Cases
	6.1 Integration with dtrack
	6.2 Reusability of Archival Traceroutes

	7 Related Work
	8 Conclusion
	A Processing Traceroutes
	B Evaluation of Tuning Precision of BGP Community Signals
	C Explaining High Coverage
	D Integration with iPlane
	References

